タグ別アーカイブ: ダクト内風速

角ダクトの静圧計算

丸ダクトの計算の次に来るのは角ダクトの計算ですよね。

この計算もちょっと複雑といえば複雑というのと結局どう計算していいかわからないパターンなどが出てきたりするため混乱するのですが簡易的な例を示しながら計算の説明をしてみます。

筆者撮影

ダクト経路の図とその静圧計算書

言葉だけで説明しようとしてもわけがわからなくなるので、まずはダクト経路の図と計算書を示します。

筆者作成
筆者作成

直管部分は丸ダクトの計算と同様に単位あたりの静圧と管路長をかけ算します。

継手のエルボや分岐部分は 抵抗係数ζ×動圧ρv2/2 を計算していきます。

継手の形状毎に抵抗係数や計算方法が違うので資料を見ながら計算していきます。

この計算で行き詰まるパターンとして現実のダクトの形状にあてはまる局部抵抗の計算式が資料に見当たらないということがあります。

局部抵抗の計算は参考書によって異なるものもある

まだ駆け出しのころは一冊の参考書を頼りに勉強しており、局部抵抗の計算の種類はその教科書に掲載されているものが全てだと思っていました。

しかし、いろいろな参考書を見るようになって、それぞれの参考書によって書いてある種類の数も違うし、同じ形状の継手の計算式でも違う計算方法が書いてある場合もあることがわかってきました。

ちなみに上の計算に用いた局部抵抗の資料は以下です。

・エルボ部分

空気調和設備計画設計の実務の知識より

・合流部分

建築設備設計基準(いわゆる茶本と呼ばれる参考書です)より

角ダクト合流部分の直通の流れの静圧は丸ダクトの計算と同様でよいとのことで合流部分については丸ダクト合流の資料を参考にしています。

細かい説明もしたほうがよいのかもしれませんが、うまい説明の仕方が思いつかないです。

この静圧計算については計算例や参考書を見ながら自分で何度も計算して理解していくしかないのかもしれません。

あるいは最近は簡単に計算できるプログラムを誰かが組んでいるかもしれませんが。

混乱するといけないのでひとつ言っておきたいこととして、シロッコファンなど選定する時に計算しているのは機外静圧です。

前回のブログで機器静圧も足し算した計算を紹介していますが、今回の計算では機器内の静圧は無視してゼロとして計算しています。

経験上では、ほとんどのメーカーが機外静圧の計算で機器選定しますので混乱しないようにしてください。

丸ダクトの静圧計算〜2〜

前回は継ぎ手部分などを直管部分の50%とする簡易的な計算方法を紹介しました。

最近の教科書にはこの計算例しか掲載されていませんがエルボとチーズ部分の静圧を別途算出して加算する方法もあります。

今回はその計算方法について説明します。

筆者撮影

エルボ部分と分岐部分の静圧

エルボ部分静圧の計算式があるのですがこの計算式はそのまま使うことはありません。

教科書見るたびに、あれ、こんな式で計算していたかなと思ってしまうのですが私の記憶力が悪いだけで、エルボの静圧計算はエルボ部分をその直径の何倍の長さの丸ダクト直管長に相当するかを計算するのみです。

なので、難しい式は書いてありますがやることは単純です。

エルボ部分の静圧⊿PTを具体的に求めるための資料が以下です。

いろいろ式が書いてありますが一番右のle/dを判断すればよいだけです。

例えば直径300mmの丸ダクトでエルボの曲がり具合を示すR/dの値が1.0の場合は le/d=17です。

つまり直管相当長はダクト直径の17倍ということなので

le=0.3×17=5.1[m]

ということになります。

次に、丸ダクト分岐部分の静圧計算についてですが以下の資料のようになります。

分岐方向と直流方向で係数ζ(ゼータ)の値の選び方が違うので気をつけます、ρv2/2の部分は動圧です。

具体的に計算

前回ブログと同じダクトルートで具体的に計算をしてみます。

条件:吹出口の風量はそれぞれ300m3/hとします

最遠のルートA-H間を計算していきます。

R/d=1.0として計算していきます。

A-H間の全長は49mです。

ダクトサイズはすべて1.0Pa/mとなるサイズで選定しているとして(前回ブログを参考にしてください)直管部分の静圧は

1.0×49=49Pa‥①

エルボBの静圧について、直管相当長はR/d=1.0よりle/d=17

A-C間は350Φなので 0.35×17=5.95m

よってエルボBの静圧は 1.0×5.95=5.95Pa‥②

同様にエルボEは 0.25×17=4.25mより4.25Pa‥③

エルボGは 0.175×17=2.975mより2.975Pa‥④

次に分岐Cについてv1=1800/3600/(0.175*0.175*3.14)=5.2m/s

v3=1800/3600/(0.15*0.15*3.14)=4.72m/s

v3/v1=4.72/5.2=0.9よりζ=1.3

分岐Cの静圧は ζρv32/2=17.4Pa‥⑤

次に分岐Dについてv1=1200/3600/(0.15*0.15*3.14)=4.72m/s

v2=600/3600/(0.125*0.125*3.14)=3.4m/s

v2/v1=4.72/3.4=1.39よりζ=0

分岐Dの静圧は ζρv22/2=0Pa‥⑥

次に分岐Fについてv1=600/3600/(0.125*0.125*3.14)=3.4m/s

v2=300/3600/(0.0875*0.0875*3.14)=3.47m/s

v2/v1=3.47/3.4=1.02よりζ=0

分岐Fの静圧は ζρv22/2=0Pa‥⑦

①~⑦を合計すると

49+5.95+4.25+2.975+17.4+0+0=79.6Pa

吹出しHの静圧15.0Paとしてこれを足して漸拡大および漸縮小の継手を無視しているなどのため安全率10%見込むと

(79.6+15)×1.1=104Pa

ファンを選定する場合は機器抵抗を考慮し200Paであればその数値を加えて最後に動圧分を差し引きます。

動圧は機器吹出し部分で7.0m/sの場合ρv2/2=29.4≒30Pa

よって 104+200-30=274Pa

ファンは1800m3/h 274Paで選定します。

ダクト内風速と静圧について

ダクト内風速はどう考えて決めればよいのか?入札のために用意された設備図を見ていてたまに風量に対してこれは細過ぎるのではないか、と思われるダクトサイズ選定がされていることがあります。

さすがにそのまま見積もりしてしまったら後からヤバいことになりそうなレベルの場合はダクトメジャーで確認しながらダクトサイズを修正して拾いをします。

適正なダクトサイズを選定するための風速と静圧の考え方とは?

Tama66 さんによるpixabayよりの画像

風速の許容値と静圧

ダクト内風速については用途によって許容値があります。

騒音の許容をどこまで受け入れられるかで決まっているようです。

ダクト内風速の許容値(低圧ダクト) 
空気調和設備計画設計の実務の知識より

私自身は店舗の設備設計をすることが多いですが、だいたい6~8m/s程度が許容範囲かなと思いながら設計しています。

上記の表でも一般店舗、食堂は 9.0m/sまで許容範囲となっています。

静圧というのは、全圧から動圧を除いたもので、ダクトの抵抗、あるいは圧力損失と思えばよいです。

この静圧については基本は1.0P/mで考えて、低圧ダクトでは0.8~1.5Pa/mの範囲で抑えます。

天井ふところがあまりないため、ダクトサイズを絞らなければならない場面があります。

2.0P/m超えてくるとちょっと風量確保ができるか怪しくなってきます。

ダクトサイズを絞った部分で抵抗がかなり大きくなりその先の風量がしっかり出ない場合もあるので注意が必要です。

もう一点、排煙ダクトは20~15m/sと記載がありますが、これはその施設によって設定が違うので確認が必要です。

経験上の話で言ってしまうと排煙ダクトも高圧ダクトとしてではなく低圧ダクトと同様に考えて設計している施設が多く、ダクト内風速を最高で10m/s程度の考えで設計した方が無難です。

現実的に20m/sというダクト内風速だとかなり抵抗が大きくなってしまい希望している風量が得られないパターンが多いです。

排煙ファンが700Pa以上の静圧で設定されているのになぜか計算通りの風量がでないという‥そんな経験もしました。

過去に風量確保ができず苦労した数件の現場が思い出されます。

ほんとうにこれは一度施工してみて風量測定するまで性能が出るかどうか確認しようがないこともあり注意が必要です。

ダクト圧力の分類とダクトの板厚

ダクト圧力の分類とダクト板厚は以下の資料のようになります。

ダクト圧力の分類
ダクトの板厚 角ダクト
ダクトの板厚 スパイラルダクト
すべて空気調和設備計画設計の実務の知識より

高圧ダクトの板厚は低圧に比べて1番手上を選ぶイメージです。

スパイラルダクトはハゼの部分の強度があるため角ダクトのような板厚は要求されていません。