タグ別アーカイブ: 建築設備専門家向け

受水槽のサイズ選定

受水槽方式の場合に受水槽のサイズをどのように考えて選定すればよいのか。

建築物の規模が大きくなれば受水槽も大きくなるであろうことはわかりますが何を基準に選定すればよかいのか、どのような計算に基づき選定するのか説明します。

筆者撮影

受水槽の容量を計算

受水槽の容量Vsは使用時間から考えたときに以下の計算式により考えます。


Vs ≧ Vd – Qs・T ‥①

Vs :受水槽の有効容量[m3]

Vd:一日の使用水量[m3/日]

Qs:水源からの給水能力[m3/h]

T:1日の平均水使用時間[h]


また、水の使用時間帯意外の時間帯に受水槽を満水にする必要があるため次式も満たすようにします。


Qs ・(24-T) Vs ‥②


実際に数値を代入しての計算例を示します。

事務所で Vd:一日の使用水量120[m3/日]

Qs:水源からの給水能力127[L/min]

T:1日の平均水使用時間9[h]

の場合を計算します。

まず給水能力Qsの単位を直しておきます。

Qs=127[L/min]=0.127×60 [m3/h] =7.62 [m3/h]

以上の数値を①の式に代入していきます。

Vs ≧ Vd – Qs・T= 120-7.62×9=51.4 [m3]

次に②の式も確認しておきます。

Qs ・(24-T) Vs ‥②

7.62×(24-9)=114.3 [m3]

よって受水槽容量は51.4[m3]以上 114.3[m3]以下 で選定します。

受水槽の容量の目安は一日使用水量の半分程度となるので

60[m3] で決定します。

半分程度なので70[m3]などでもよいですが、とりあえずジャスト半分ということで。

1日の使用水量について

受水槽の容量については各自治体や水道事業所によって規定があるので必ず各地域の水道局などへ確認する必要があります。

各自治体で規定はそれぞれですが、よく見かけるのは1日の使用水量の4/10~6/10の範囲で計算する規定です。

1日の使用水量については下記の資料などを参考に求めてください。

給排水衛生設備計画設計の実務の知識の資料を参考に筆者作成

水同局の担当者とはよく打合せをする必要があります

類似の既存施設や既存店舗の過去の給水使用量のデータを参考にすれば、もっともその現場に合致した選定ができるはずであるし受水槽サイズを小さくしたいときなど、水道局との交渉にそのような資料を持っていくと話がまとまりやすいです。

ただし、水道局によって考え方がだいぶ異なるためその水道局独自の規定に従ってくださいの一点張りの場合もありますので気をつけてください。

既存店舗の使用量の資料を持って、受水槽の容量を抑えたい要望を水道局に相談した場合に8割〜9割は柔軟な対応をしてくれます。

受水槽のサイズダウンが可能な場合もありますが、やはりその水道局の規定にどうしても従ってほしい、ということも当然あります。

その場合は、交渉を長引かせても意味がないので妥協できるところで妥協するしかありません。

そんなに水の量は使わないのにな、と思いつつかなり大きい受水槽を設置した例は過去にも何回かありました。

本来、受水槽の容量が大きすぎると水槽内の残留塩素濃度が減少し雑菌繁殖の原因となるため好ましくはありません。

類似既存店の過去データという、もっとも信頼に値するデータを無視して規定に従わせる水道局の判断が正しいのか疑問は残ります。

ただ、「この地域の他の店舗もこの規定に従っていますので平等性を考慮すると特例を認めるわけにはいきません」という話にも一理あるため、なかなかゴリ押しはできません。

まあ、仕事が滞ることは問題なのでそのときの状況を見ながらうまくやるしかないです!

一酸化炭素中毒は死に直結する〜給湯器の設置について〜

室内に給湯器を設置して排気筒により排気する場合やダクト対応型の排気ダクト内に燃焼後の汚染された空気を排気する方法の給湯器を設置する場合は特定ガス工事監督者の資格を持つ者が施工を指導しなければいけない決まりになっています。

給湯器の設置工事は取り扱いを間違えると一酸化炭素中毒により最悪は死亡事故につながる可能性もあるほどのリスクを伴うものです。

fotoblend さんによるpixabay よりの画像

過去におきた重大事故例

平成5年5月、山梨のリゾートマンションで密閉式の暖房機能付瞬間湯沸器の機器のみを交換して排気筒の健全性を確認せずに再利用したことが原因で7名の死亡と中毒者2名となる事故が発生しています。

ガス消費機器設置工事監督者 再講習テキスト より

既存の排気管は20年以上使用されていたもので腐食によって穴が空いていたことに加えて給排気トップの金網が破れて、そこから鳥が入り込み排気管内部に巣が作らてれている状態でした。

また、機器交換時に排気管と機器接続部のサイズが合わずガムテープで隙間を塞ぐという杜撰な施工がなされていました。

鳥の巣が障害になり排気が正常に排出されない状態のまま運転し続けたことにより一酸化炭素が発生し、排気管の穴などの隙間から天井内を経由して居室へ流れ出ました。

一酸化炭素を吸い込んだ結果、居室にいた7名が死亡、2名が中毒となる重大な事故に至っています。

事故から考えられる対策としては

・機器交換時に排気管の確認を行い、新設する機器と合うものか確認する。

・天井裏の排気管に異常がないか確認する、目視できない場合は内視鏡などで確認する。

・排気管については容易に外れないよう抜け防止の処置が講じられていること、気密保持の処置が講じられていることを確認する。

以上になります。

正直、この事例を見た時に私が思ったのは20年以上使用された排気管の再利用を安易にしてはいけないということです。

現場確認をよくした上で排気管の再利用でなく新規に交換する機器に合わせて排気管も更新する判断をすべきでした。

気を抜くとこのような判断をしてしまう可能性はゼロではないので、自分自身も現場調査は丹念に行い安易な判断に繋がらないように心がけたいです。

CO濃度と吸入時間および体に現れる症状について

一酸化炭素、COの比重は0.967で無色無臭なので空気中に拡散しても気づきにくいですが、発生時にアルデヒド等の刺激物も発生するのでその異臭はします。

COは血中の酸素を運搬するヘモグロビンと結びつきやすい性質がありますが、酸素よりも200から300倍も結合力が強いため微量でもCOを吸込むと酸素の運搬能力は著しく低下します。

ガス機器の使用中に頭痛や脱力感、または目が痛くなったり異臭を感じた場合はすぐにそのガス器具の使用を中止して窓を開けるなどして換気をしてください。

CO濃度によって中毒症状は大きく違います。

以下にCO濃度と中毒症例についてに資料を添付します。

CO濃度と吸入時間による一酸化炭素中毒症例  ガス消費機器設置工事監督者 再講習テキスト より

ガス消費機器設置工事監督者は排気筒の確実な施工を実施することが重要

特定ガス消費機器工事の監督に関する法律は、特定ガス消費機器の設置工事の欠陥に関わる災害を防止するために工事事業者の工事の監督に関する義務等を定めたものです。

特に排気筒の確実な施工は重要なものなので強制給排気型や強制排気型、フード対応型の給湯器を設置するなどの特定工事を特定工事業者が施工した場合には表示を付すことが第6条に規定されています。

いわゆる特監シール これを給湯器などに添付します

FF(強制給排気型) および FE(強制排気型)の場合の表示ラベル貼付位置の例を下に示します。

フード対応型の場合の表示ラベル貼付位置の例を下に示します。

最近の給湯器はセンサーで汚染物質を感知して自動で運転停止するなど性能が向上してることもあり事故は減少傾向です。

しかし過去の事故事例から死亡者が発生している事例もあり、このような痛ましい事故を起こさないために排気筒などが確実に施工されているか確認することは大事なことです。

ちなみにこのシールを貼ることができるのはガス消費機器設置工事監督者の資格者となります。

講習のみで資格はもらえるので必要があればお金はかかりますが講習を受けて資格をとりましょう!

給水方式について

建築物への給水の仕方について、その建築物の規模や用途などで違った方式が採用されます。

今回は、給水方式にはどのような方式があって、どのような特徴があるのか説明していきます。

kscz58ynk さんによるphotoAC よりの画像

給水方式の分類

給水本管から配管を分岐して受水槽を経由しないで直接的に給水する方式を水道直結方式といいます。

水道直結直圧方式 と 水道直結増圧方式があります。

建築物内に受水槽を設けて給水する方式を受水槽方式といいます。

高置水槽方式 ポンプ直送方式 圧力水槽方式

がありますが、圧力水槽方式については新規の採用がないため説明を省きます。

水道直結方式は衛生的

・水道直結直圧方式

水道本管から直接、建築物内へ給水を引き込む方式で2F建てまでの建築物に限定されていましたが、最近は高圧配水システムを採用してる水道事業所において4~5Fまで供給できるようになっています。

受水槽を設けないので水が滞留する時間がなく衛生的であることがメリットですが、水道本管が断水した場合は直ちに断水することがデメリットとなります。

・水道直結増圧方式

給水本管から直結の形ですが10F程度までの中規模建築物についても対応できるように増圧ポンプを設置して水圧を制御する方式です。

増圧ポンプのイメージ テラル㈱のHPより

インバーターによる変速制御と台数制御によって流量をコントロールしています。

また、ポンプユニットから本管側へ逆流しないように逆流防止装置が設けられています。

水道本管の圧力を利用できるため省エネルギーになるのと、1年毎の清掃が義務付けられていない10m以下の受水槽の建築物を水道直結増圧方式にすることによる衛生面の向上がメリットとしてあげられます。

この方式も水道本管が断水すると断水します。

増圧ポンプを設置する場合に水道局メーターはバイパスユニットとしなければなりません。

メーターバイパスユニット ㈱日邦バルブのHPより

受水槽が無いためメーター交換時でも給水可能とするためにこのような処置がとられています。

受水槽方式は給水本管が断水してもすぐに断水しない

・高置水槽方式

高置水槽方式は1FあるいはB1Fなどのレベルで受水槽を設け揚水ポンプで屋上の高置水槽まで水を持ち上げます。

高置水槽からは自然の重力によって給水する方式です。

最上階での水圧確保ができるように高置水槽の高さを設定しなければならないので、ペントハウスの上にさらに架台を組んで屋上のスラブから7~10m上になるように設置されている水槽を見かけたことがあるのではないでしょうか。

ちなみに10m上に持ち上げれば約0.1Mpa(1.0kgf/cm2)の水圧を確保できます。

しかし最近はこの高置水槽の採用はかなり減っています。

水槽は2つ必要なのでその設置場所および維持管理に労力や経費がかかることが避けられる理由だと考えられます。

改修工事の際に高置水槽をやめて水道直結増圧方式かポンプ直送方式かいずれかに変更している事例が多いです。

新築工事にいたっては、現在ほとんどこの高置水槽方式は採用されていないというのが実感です。

・ポンプ直送方式

受水槽でいったん水を貯めて、そこから直送ポンプ(加圧ポンプとも言う)で建築物内の各所へ水を送る方式です。

受水槽方式のメリットとしては給水本管が断水しても受水槽内に貯められた水は電源喪失さえしてなければ使用できることです。

受水槽への給水には定水位弁(通称FMバルブ)を使用します。

定水位弁は副弁(ボールタップから電磁弁に至る部分)と主弁がセットになっていて水位が下がってボールタップが下がると副弁が開きそれに連動して主弁が開きます。

主弁はマンションなど流量が多い場合は50Aなどのサイズとなるため、この配管径のバルブの開閉はウォーターハンマーを起こす可能性が高く、その衝撃音が問題となることや配管継手部や機器類の損傷につながる可能性があるためそれらを防止する目的で定水位弁を用いています。

20Aまでの細い配管であればボールタップそのままで給水していますが25A以上では副弁を用いた定水位弁での供給をしています。

定水位弁の配管例 ㈱ベンのHPより

今回のテーマである給水方式の説明はここまでになります。

参考にしていただければと思います!

給排気ファンの選定

風量と静圧がわかればファンを選定できます。

メーカーのカタログなどに線図があるので、線図に風量と静圧を書き込めば選定できます。

ファンもいろいろ種類があるので、店舗などの設備工事でよく使用するものについて説明します。

筆者撮影

シロッコファンを性能表から選定

風量と静圧の条件につては

風量:5350m3/h

静圧:480Pa とします。

今回は荏原製作所シロッコファンの性能表に風量と静圧をプロットして選定します。

機種は一般的な空調、換気用に使用するSRM4 を選びます。

番手については No.2 1/2 で検討

性能表に上記の風量と静圧をプロットすると以下のようになります。

SRM4 No.2 1/2 の性能表

風量と静圧の線が交わった点は2.2kwの範囲に入っているのでモーターは2.2kwとなります。

では、同じSRM4で番手が No.2 だったらどうなるでしょうか。

サイズが小さければコストダウンになるので検討してみます。

性能表に風量と静圧をプロットします。

SRM4 No.2 の性能表

風量5350m3/h 静圧467Paをとった点が選定エリアから外れていることがわかります。

この場合はNo.2での選定は不可であることを意味します。

コストダウンしたくてもファンの能力が出ない可能性があるのでNo.2はあきらめてNo.2 1/2 で選定することになります。

また、風量と静圧から求めた性能表上の点の位置はできるだけ性能表の中央付近になるように番手を選定します。

あまりにも上の方に点が来てしまった場合は例えばファンを設置した後に風量がやや足りなかったりすることがありますが、その時にモーターの能力を上げたりプーリーアップして回転数を上げたりしますが、それらの対応ができないことになります。

性能表上にプロットした点の位置が下の方によってしまう場合は能力を過剰にみている可能性が高いので番手をひとつ下げる検討が必要です。

ファンの種類はどのように使い分けているのか

シロッコファン

シロッコファンについては、風量および静圧が大きくとれるので排気量が多めに必要となる場合に選定します。

厨房排気はシロッコファンの選定が多いです。

荏原製作所で言えばSRMや気体温度80℃まで対応可能なSRMOが選定されます。

シロッコファン 荏原製作所のHPより

ストレートシロッコファン

ストレートシロッコファンは天井のふところ内に本体が納まるようにコンパクトな形をしています。

ストレートシロッコファン 三菱電機のHPより

居室の一般換気で使用することが多いです。

かなり運転音が静かで最近の機種は40dBを下回るものもあります。

また、厨房用のストレートシロッコファンもあります。

風量は大きいもので10000m3/h程度まで対応できる機種があるので(風量大きい場合はシロッコファンの方が良いですが)必要に応じて選定することになります。

天井扇

天井扇はマンションや事務所などの建築物で比較的風量が小さい居室やトイレの排気などで選定されます。

天井扇 三菱電機のHPより

一台あたり風量が小さいもので50m3/h、大きいもので400m3/h程度までの対応となります。

風量と静圧ともに小さめの時に選定されます。

風量や用途で細かく品番が分かれていて、かなり多くのバリエーションが存在しています。

サニタリー用や事務所用など用途によって最適な天井扇を選定することができます。

全熱交換器

ロスナイ(三菱電機商品の商品名ですが)と呼ばれる全熱交換器は事務所によく設置されます。

全熱交換器 三菱電機のHPより

室内空気と室外空気の顕熱と潜熱ともに交換できます。

エンタルピー交換効率が75%の機種を採用すれば空調負荷計算の際に外気風量を75%減じて計算することができます。

ラインファン

ラインファンについては給気用で設置することがあります。

得られる風量に対してファンの値段は安いと言えますが、運転時の騒音が問題視されることがあります。

LFMのNo.3で59〜56.5dBです。

過去の現場において何度か「音がうるさいからなんとかしてほしい」というクレームをいただいたことがあります。

ラインファン 荏原製作所のHPより

消音型の機種もありますが消音部材の大きさが大きく納まりが悪くなるので、それならばストレートシロッコの方がコンパクトで納まりが良いため最近は給気ファンもストレートシロッコで選定してしまうことが多いです。

ミニシロッコファン

ミニシロッコファンも騒音が比較的大きく過去現場でクレームをいただいたことがあります。

ミニシロッコファン 三菱電機のHPより

BF-21S4の吸込部分で63dBなのでかなりの騒音が出ます。

これもできれば居室の天井内設置は避けたいです。

過去に一度でもクレームをいただいてやむなく是正工事で交換という経験をしてしまうとなかなかその機種を同じシチュエーションで選定することはできませんが、騒音があまり関係のない場所では使用できるので臨機応変に選定してください。

最後は騒音のクレームの愚痴みたいになってしまいましたが、ファン選定の参考にしてみてください!

角ダクトの静圧計算

丸ダクトの計算の次に来るのは角ダクトの計算ですよね。

この計算もちょっと複雑といえば複雑というのと結局どう計算していいかわからないパターンなどが出てきたりするため混乱するのですが簡易的な例を示しながら計算の説明をしてみます。

筆者撮影

ダクト経路の図とその静圧計算書

言葉だけで説明しようとしてもわけがわからなくなるので、まずはダクト経路の図と計算書を示します。

筆者作成
筆者作成

直管部分は丸ダクトの計算と同様に単位あたりの静圧と管路長をかけ算します。

継手のエルボや分岐部分は 抵抗係数ζ×動圧ρv2/2 を計算していきます。

継手の形状毎に抵抗係数や計算方法が違うので資料を見ながら計算していきます。

この計算で行き詰まるパターンとして現実のダクトの形状にあてはまる局部抵抗の計算式が資料に見当たらないということがあります。

局部抵抗の計算は参考書によって異なるものもある

まだ駆け出しのころは一冊の参考書を頼りに勉強しており、局部抵抗の計算の種類はその教科書に掲載されているものが全てだと思っていました。

しかし、いろいろな参考書を見るようになって、それぞれの参考書によって書いてある種類の数も違うし、同じ形状の継手の計算式でも違う計算方法が書いてある場合もあることがわかってきました。

ちなみに上の計算に用いた局部抵抗の資料は以下です。

・エルボ部分

空気調和設備計画設計の実務の知識より

・合流部分

建築設備設計基準(いわゆる茶本と呼ばれる参考書です)より

角ダクト合流部分の直通の流れの静圧は丸ダクトの計算と同様でよいとのことで合流部分については丸ダクト合流の資料を参考にしています。

細かい説明もしたほうがよいのかもしれませんが、うまい説明の仕方が思いつかないです。

この静圧計算については計算例や参考書を見ながら自分で何度も計算して理解していくしかないのかもしれません。

あるいは最近は簡単に計算できるプログラムを誰かが組んでいるかもしれませんが。

混乱するといけないのでひとつ言っておきたいこととして、シロッコファンなど選定する時に計算しているのは機外静圧です。

前回のブログで機器静圧も足し算した計算を紹介していますが、今回の計算では機器内の静圧は無視してゼロとして計算しています。

経験上では、ほとんどのメーカーが機外静圧の計算で機器選定しますので混乱しないようにしてください。

丸ダクトの静圧計算〜2〜

前回は継ぎ手部分などを直管部分の50%とする簡易的な計算方法を紹介しました。

最近の教科書にはこの計算例しか掲載されていませんがエルボとチーズ部分の静圧を別途算出して加算する方法もあります。

今回はその計算方法について説明します。

筆者撮影

エルボ部分と分岐部分の静圧

エルボ部分静圧の計算式があるのですがこの計算式はそのまま使うことはありません。

教科書見るたびに、あれ、こんな式で計算していたかなと思ってしまうのですが私の記憶力が悪いだけで、エルボの静圧計算はエルボ部分をその直径の何倍の長さの丸ダクト直管長に相当するかを計算するのみです。

なので、難しい式は書いてありますがやることは単純です。

エルボ部分の静圧⊿PTを具体的に求めるための資料が以下です。

いろいろ式が書いてありますが一番右のle/dを判断すればよいだけです。

例えば直径300mmの丸ダクトでエルボの曲がり具合を示すR/dの値が1.0の場合は le/d=17です。

つまり直管相当長はダクト直径の17倍ということなので

le=0.3×17=5.1[m]

ということになります。

次に、丸ダクト分岐部分の静圧計算についてですが以下の資料のようになります。

分岐方向と直流方向で係数ζ(ゼータ)の値の選び方が違うので気をつけます、ρv2/2の部分は動圧です。

具体的に計算

前回ブログと同じダクトルートで具体的に計算をしてみます。

条件:吹出口の風量はそれぞれ300m3/hとします

最遠のルートA-H間を計算していきます。

R/d=1.0として計算していきます。

A-H間の全長は49mです。

ダクトサイズはすべて1.0Pa/mとなるサイズで選定しているとして(前回ブログを参考にしてください)直管部分の静圧は

1.0×49=49Pa‥①

エルボBの静圧について、直管相当長はR/d=1.0よりle/d=17

A-C間は350Φなので 0.35×17=5.95m

よってエルボBの静圧は 1.0×5.95=5.95Pa‥②

同様にエルボEは 0.25×17=4.25mより4.25Pa‥③

エルボGは 0.175×17=2.975mより2.975Pa‥④

次に分岐Cについてv1=1800/3600/(0.175*0.175*3.14)=5.2m/s

v3=1800/3600/(0.15*0.15*3.14)=4.72m/s

v3/v1=4.72/5.2=0.9よりζ=1.3

分岐Cの静圧は ζρv32/2=17.4Pa‥⑤

次に分岐Dについてv1=1200/3600/(0.15*0.15*3.14)=4.72m/s

v2=600/3600/(0.125*0.125*3.14)=3.4m/s

v2/v1=4.72/3.4=1.39よりζ=0

分岐Dの静圧は ζρv22/2=0Pa‥⑥

次に分岐Fについてv1=600/3600/(0.125*0.125*3.14)=3.4m/s

v2=300/3600/(0.0875*0.0875*3.14)=3.47m/s

v2/v1=3.47/3.4=1.02よりζ=0

分岐Fの静圧は ζρv22/2=0Pa‥⑦

①~⑦を合計すると

49+5.95+4.25+2.975+17.4+0+0=79.6Pa

吹出しHの静圧15.0Paとしてこれを足して漸拡大および漸縮小の継手を無視しているなどのため安全率10%見込むと

(79.6+15)×1.1=104Pa

ファンを選定する場合は機器抵抗を考慮し200Paであればその数値を加えて最後に動圧分を差し引きます。

動圧は機器吹出し部分で7.0m/sの場合ρv2/2=29.4≒30Pa

よって 104+200-30=274Pa

ファンは1800m3/h 274Paで選定します。

丸ダクトの静圧計算〜1〜

空調や換気のためのダクトサイズや送風機の選定をする際に静圧を考慮しなければなりません。

静圧は配管で言うところの圧力損失のようなものです。

店舗の設備設計においては静圧計算書の提出を求められることはあまりないのですが例えば設計図書で設定された風量が出ない場合などは静圧が大き過ぎないか確認しなければならなくなります。

後から計算したのでは遅いので本来は設計時に計算しながらダクトサイズ選定していくのが理想ですが、まずは1.0Pa/mという静圧の目安を守って設計していればまずトラブルになることはありません。

今回は丸ダクトの簡易的な静圧計算方法について説明してきます。

筆者撮影

静圧の簡易的な計算方法

下図のダクトサイズと静圧を求めます。

条件:吹出口の風量はそれぞれ300m3/h       吹出口の静圧抵抗を6Paとします

最遠のルートであるA-H間を計算していくことにします。

単位あたりの静圧は1.0Pa/mとして下に示したダクト流量線図を利用してダクトサイズを選定します。

ダクト流量線図 空気調和設備計画設計の実務の知識より抜粋

選定したサイズを以下に示すと

A-C間 1800m3/h 350Φ

C-D間 1200m3/h 300Φ

D-F間 600m3/h 250Φ

F-H間 300m3/h 175Φ

となります。

次に静圧の計算ですが、エルボやチーズ部分の局部抵抗については簡易的にダクトルート全長の50%分とします、単純な経路の場合はこのように計算してかまいません。

ダクトルート全長を求めると

10+10+6+6+10+6+1=49m

よってダクトルート全体の静圧は

1.0Pa/m × (49m + 49m × 0.5)+ 6Pa =79.5Pa となります。

数字上静圧が大きくなくても風量確保困難の場合がある

静圧計算をいくらしっかりしても風量が確保できない場合があります。

と言うのは、ダクトルートの途中にダクトサイズが細すぎる部分があると、抵抗がかかり過ぎてその先は風量が全く確保できないということがあるからです。

例えば1400m3/hの風量が通過するメインダクトのサイズを350Φで施工するとしてこのダクトを途中で200Φに縮小するとします。

350Φのときは長さ単位あたり1.0Pa/mの静圧ですが200Φの場合は10Pa/mと静圧は10倍となります。

200Φの部分が2mあってまた350Φにもどせば計算上はその2m分で20Paを足せばいいのだから大丈夫だろう、という考えは間違いです。

ダクトルートの途中で急激にサイズを縮小した場合は、縮小部分で抵抗が大きくなり過ぎてその先へ空気がうまく搬送されなくなります。

つまり、誤って途中でおかしなダクトサイズ選定をしてしまうと計算上はそこまで静圧の数値は大きくならないが風量が確保できないということが起こり得るということです。

経験値の浅い設計者が以外とこのミスをしてしまいます、どこまでサイズを絞っても大丈夫そうかという勘が働かないからです。

まずは1.0Pa/mを目安に設計することです。

ちなみに低圧ダクトは0.8〜1.5Pa/mで設計することになっています。

なのですが、店舗の換気設備を設計する場合は、納まりが厳しい現場が多くダクトサイズを大きく取れないことが多いので1.5〜2.0Pa/mまでは許容範囲として計算しながらサイズ選定および静圧計算していけばよいです。

もし、その現場や施設において静圧に関する設計基準がある場合はそちらを順守してください。

換気方式と換気回数

感染症のこともあり、いま話題にあがることが多くなった換気についてですが今回取り上げるのは特別なことではなく設備工事や設備設計に携わるかたが知るべき基本的な換気方式の種類や換気回数の目安についてです。

筆者撮影

換気方式の種類

建築に関わらない方からは換気に種類などあるのか問われそうですが送風機を給気と排気どちらに使用するか、しないかなどで種類分けがあります。

建築関係の仕事をしていると換気方式については基本的な知識として知っているものとして打合せなどの会話で普通に出てくることもあるので覚えておいて損はないです。

換気方式の概要図を示します。

第1種は給気、排気とも送風機を用いる換気方式で換気量の設定によって室内の静圧を正圧にも負圧にも計画することが可能です。

ここで正圧と負圧の説明をしておきます。

正圧の状態は室内から空気が押し出される状態になります。

なので外部から汚染された空気を取り込みたくない手術室などは正圧にします。

負圧の状態は上記の逆で室内へ空気を引き込むイメージになります。

トイレの臭気など汚染された空気をその室から周囲へ漏らしたくない場合は負圧で計画します。

換気方式の説明にもどりますが、第2種は給気に送風機を用いる換気方式で室内は正圧になります。

第3種は排気に送風機を用いるので室内は負圧になります。

上記の3種に加えて自然換気も換気の種類としてあげられます。

給気も排気も送風機を用いずに自然の風圧や気温の差を利用して換気します。春や秋の気候が良いときは窓を開け放しで部屋の空気を入れ替えます、それが自然換気です。

建築的にボイドと呼ばれる空気の通り道を設けて風圧差と温度差で換気を促すのも自然換気の考え方です。

基準換気回数について

室の用途別で基準換気回数をまとめた表です。

換気設計風量基準換気回数 空気調和設備設計計画の実務の知識より             表中の×は一般的に採用されない方式を示す

上記以外の事務室の居室などは以前書いたブログ居室の換気量計算についてに詳細がありますがV=20Af/NとV=0.5Ahなどの計算で算出して決定していきます。

上記の表もあくまで目安なので居室あつかいになる室となる場合は必ず換気量計算をして必要な風量を確認する必要があります。

喫煙室の換気量はどうするか、度々問題になりますが最近は入口などの開口部で喫煙室の外側から内側に向けて0.2m/sの風速が確保できる風量で考えることが多いです。

入口ドアでW800 H2000の開口の場合は

0.8×2.0×0.2×3600=1152m3/h

という感じの計算になり、かなりの風量になることがわかります。

給水ポンプの選定について

給水設備において受水槽から高架水槽までの送水、あるいは受水槽から直接各水栓などへはポンプによって送水されてます。

ポンプを選定するときにどのように考えればよいのか、建物の高さや配管の距離によって変わることは想像がつきます。

計算例を示しながら説明していきます。

croissant. さんによるphotoAC からの画像

直送ポンプの選定について

給水ポンプ選定をする際に能力を決定するために瞬時最大流量と揚程を確認する必要があります。

給水ポンプの送水量は瞬間最大流量以上とし、揚程は算出した揚程以上として選定します。

まず瞬時最大流量の求め方は以前のブログで紹介した給水の負荷流量計算を参照してください。

瞬時最大流量は210L/minとします。

次に揚程ですが下記に示す式で求めます。


H≧H1+H2+H3

H:直送ポンプの揚程[m]

H1:直送ポンプの吸水面から最高位にある器具までの実高さに相当する水頭[m]

2:管路における摩擦損失水頭[m]

H3:最高位にある器具や水栓の必要圧力に相当する水頭[m]


ちなみに揚程とは摩擦損失などを水柱の高さとして表現したものになります。

下に図示した系統について揚程の計算をしてみます。

また、計算を簡略化するために条件を下記のように設定します。

最遠の器具までの配管長は60mとし摩擦損失はその配管長の摩擦損失と同等とします。

単位当摩擦損失は0.35kPa/mとします。

以上の条件での計算例を示します。

H1は図より11.0m

H2については配管長60mで摩擦損失はその配管長の摩擦損失と同等という条件より配管長の2倍に対する摩擦損失をもとめればよい

2=60×2×0.35/9.8=4.3m

3については最高位かつ最遠の位置にある大便器洗浄弁の流水時必要圧力が70kPaより

H3=70/9.8=7.14m

これらの値を代入して計算していきます。

H≧H1+H2+H3

=11.0+4.3+7.14=22.44m

H≧22.44m という結果が得られます。

ポンプ選定図で品番を決定する

エバラポンプのカタログを参照します。

F1300型吐き出し圧力一定・並列交互運転方式で選定していきます。

下記の選定図で給水量210L/min を垂直にとり、揚程22.44mを水平にとって交わる点がどこに位置するかを確認します。

ポンプ選定時 エバラポンプのカタログより

ちょっと微妙な位置になりますが32-5.6Sの範囲に交点が記入されます。

次に下に示した仕様表から32-5.6Sの機種は 32BIPME5.6S となります。

この機種は単相100Vなのでもし三相200Vで選定したい場合は32BIPME5.75 を選定すればよいです。

エバラの給水ポンプユニットF1300型、交互並列運転方式の外観は下の写真です。

エバラポンプ F1300型

とりあえずはポンプの選定ができました。

本音を言うと配管経路の摩擦損失計算をもっと細かくしたかったのですが煩雑になるので今回は簡略化しました。

またの機会に挑戦したいと思います。

排水設備の機能について〜SARSはトイレから〜

コロナウイルスの一種であるSARS(重症急性呼吸器症候群)は日本では2類に分類される指定感染症ですが現在は収束しています。

2002年の11月に中国の広東省で初の感染者が確認されてから2003年9月の収束まで30カ国で8098人の感染者と774人の死亡者が確認されました。

感染が広がる中で香港の高層マンションで排水菅の不備により321人が感染したという事例がありますが排水管の不備とはいったいどういうことなのでしょうか。

Alexas_Fotos さんによるPixabay よりの画像

便器から飛沫が飛ぶ可能性

大便器まわりにウイルスが多く存在するという話がありますが、あながち嘘でもなく、ダイヤモンドプリンセス号においてもトイレ周辺から新型コロナウイルスが多数検出されたという報告があったようです。

香港城市大学の研究によればトイレの水を流す際に1回あたり最大80万個のウイルスを含む飛沫が空中に吹き上がるとのこと。新型コロナトイレの糞口感染対策が盲点

つまり排水管に不備などなくとも飛沫は飛んでいるということですがSARSの感染拡大のひとつの原因となった高層マンションでの排水管の不備はさらに多くの飛沫を飛ばす状態になっていた可能性があります。

このSARSの話は「感染症の世界史」という本にあります。

マンションの排水管の不備で(感染源となった)男性の飛沫や糞沫に含まれていたウイルスがトイレの換気扇に吸い上げられてマンション内に拡散した可能性が高い、という記載です。

その事実は確かに書かれていますが排水管の不備というのが具体的にどのようなことだったのかまでは残念ながら書いてありません。

ネットで調べたら何か出てくるかと思いましたが探し方も悪かったのかもしれませんが何も出てきません。

そこで、どのような状態だったことが考えられるかのか予想してみました。

排水管内からガスが逆流

排水は立管から各階で枝配管を分岐させる形で配管します。

例えば最上階のトイレからSARSに汚染された汚物が流れたとした場合、排水立管が全体的に汚染されます。

そして、ここがポイントだと思っていますが、排気のための換気扇を作動させたのはよいが、給気口がない、あるいは給気口はあるが何らかの理由で閉鎖している状態だった場合、室内およびトイレ内は負圧になります。

室内およびトイレ内が負圧の状態になると排水管内のガスを引っ張って吸い上げてしまうことがあります。

マンションの排水管と
排水管内ガスが移動するイメージ

さらに大便器のトラップの封水が便器の不良などで破られ易い状態だったとしたら大便器から排水管内のウイルスを含んだ飛沫が大量に逆流してくる可能性はあります。

321人の感染者を出したという事実を見ると、このような不具合が起こっていたのではないかということが予想されます。

現在の日本国内のマンションの計画はそこまで杜撰なものはないので同じようなことが起きる可能性は低いですが、施工時に室内やトイレ内が負圧になり過ぎないか、各器具のトラップは問題なく機能するかなどは確認しておく必要があります。

たとえSARSウイルスの飛沫でなくとも、大便器からかなりの量の飛沫が飛んでくるとしたら、それはよくないので…。